

ASSESSING MORPHOLOGICAL PRODUCTIVITY IN A CORPUS LANGUAGE: A DIACHRONIC STUDY OF ANCIENT GREEK DEVERBAL NOMINAL SUFFIXES

Silvia Zampetta - *University of Pavia*

Fifth International Workshop on Resources and Tools for Derivational Morphology September 4 and 5, 2025, University of Fribourg, Switzerland

Roadmap

- 1. Introduction
- 2. Methodological Framework
- 3. Measuring the Productivity of Ancient Greek Deverbal Nominal Suffixes
 - Distribution and Relative Frequency Across Time
 - P Measure
 - P* Measure
 - LNRE Models
 - Suffix Interaction and Resolution of Rivalry
- 4. Conclusion

1. Introduction

Background & Research Gap

- Ancient Greek Deverbal Nominal Domain
- Well-studied from an Indo-European perspective
 - *e.g.*, Debrunner 1916, Chantraine 1933, Benveniste 1948, Risch 1974
 - > Focus: morphophonology & cross-linguistic comparison
- Recent developments
 - *-mo- in diachronic/typological framework (Napoli 2009)
 - Synchronic nominalizations (Civilleri 2010)

Background & Research Gap

- Ancient Greek Deverbal Nominal Domain
- · Well-studied from an Indo-European perspective
 - E.g., Debrunner 1916, Chantraine 1933, Benveniste 1948, Risch 1974
 - > Focus: morpho-phonology & cross-linguistic comparison
- Recent developments
 - -mo- in diachronic/typological framework (Napoli 2009)
 - Synchronic nominalizations (Civilleri 2010)
- No quantitative & diachronic analysis of morphological productivity

Background & Research Gap

- Most empirical research on productivity in derivational morphology has focused on modern languages, mainly due to the availability of large electronic corpora and computational tools
 - ✓ English (Baayen 1989, 1992, 1993, 2009)
 - ✓ German (Evert and Lüdeling 2001)
 - ✓ Italian (Gaeta and Ricca 2003, 2005, 2006, Varvara 2019, 2020)
 - ✓ **Old Italian** (Štichauer 2006), which introduced a diachronic dimension

Aims, Corpus & Data Extraction

- Research Aims
- 1. **Measure productivity** of six AG deverbal nominal suffixes in diachrony:
 - ✓ -eía, -mos/-mós, -sia, -sis, -tis, -tus + their allomorphes
 (Chantraine 1953: only suffixes whose function of creating abstract names from verbs is already recognized, and whose phonetic substance is clear)
- 2. Using corpus-based statistical methods (Baayen 1989 et seq.)
- 3. **Evaluate applicability** of modern productivity measures to **Ancient Greek**

Aims, Corpus & Data Extraction

- Corpus (< Thesaurus Linguae Graecae)
 - 1. ~4 million tokens from 8th c. BC to 6th c. AD
 - 2. Divided into 4 sub-corpora: Archaic, Classical, Hellenistic, Imperial
 - 3. Balanced by token count and genres
 - 4. Philological consistency: only texts with available critical editions, commentaries, and translations

Historical Period	Archaic	Classic	Hellenistic	Imperial
Token	277.876	1.231.944	1.158.453	1.288.522
Literary genres	3	5	6	5

Aims, Corpus & Data Extraction

Data extraction

- ✓ Based on Liddell-Scott-Jones lexicon (Perseus)
- ✓ Manual checking for relevant deverbal nouns, excluding:
 - POS ≠ Noun
 - Non-deverbal derived nouns
 - Compounds
 - Proper nouns
 - Borrowings
 - Baseless formations
- ✓ **Final dataset**: 1905 types and 50,637 tokens

Theoretical definition

• Plag 2006: The productivity of a given affix refers to its **potential** to form new words and the **extent** to which this potential is actually realized in language use

Theoretical definition

- Plag 2006: The productivity of a given affix refers to its **potential** to form new words and the **extent** to which this potential is actually realized in language use
- ✓ Potential = qualitative feature

Theoretical definition

- Plag 2006: The productivity of a given affix refers to its **potential** to form new words and the **extent** to which this potential is actually realized in language use
- ✓ Potential = qualitative feature
- ✓ Extent = quantitative feature

- Theoretical definition
 - Plag 2006: The productivity of a given affix refers to its **potential** to form new words and the **extent** to which this potential is actually realized in language use
 - ✓ Potential = qualitative feature
 - ✓ Extent = quantitative feature

OPERATIONALIZATION

- Operative definition (< corpus-based statistical methods)
 - Productivity is:
 - ✓ Synchronic
 - ✓ Linked to the number of **hapax legomena**, i.e., words with a frequency of 1 in a given corpus

- Operative definition (< corpus-based statistical methods)
 - Productivity is:
 - ✓ Synchronic
 - ✓ Linked to the number of hapax legomena, i.e., words with a frequency of 1 in a given corpus
- Hapax legomenon = approximation of neologism
 - In large corpora: unfamiliar words indicate an ongoing word formation process
 - Psycholinguistics view:
 - ➤ Speakers decompose rare words into known morphemes
 - Productive rules → many rare/new forms
 - \circ **Unproductive rules** \rightarrow few high-frequency, well-established words

3. Measuring the Productivity of Ancient Greek Deverbal Nominal Suffixes

Distribution and Relative Frequency Across Time

Archaic Period, VIII-VI BC, F = 277876 tokens					Classical Period, V-IV BC, F = 1231944 tokens				
Suffix	V	N	h	R, (%)	Suffix	V	N	h	R, (%)
-eía	8	19	4	0.068	-eía	46	865	17	0.702
-mos/-mós	40	358	17	1.288	-mos/-mós	156	2005	64	1.628
-sia	11	158	4	0.569	-sia	33	320	12	0.259
-sis	145	547	73	1.969	-sis	792	10238	302	8.310
-tis	8	24	3	0.086	-tis	8	195	2	0.158
-tus	12	45	7	0.162	-tus	1	1	1	0.001
Hellenistic P	eriod, III	-I BC, $F = 11$	21023 tok	ens	Imperial Period, I-VI AD, F = 1288522 tokens				
Suffix	V	N	h	R, (%)	Suffix	V	N	h	R, (%)
-eía	50	1632	11	1.456	-eía	66	1222	12	0.948
-mos/-mós	160	1267	78	1.130	-mos/-mós	217	3116	87	2.418
-sia	39	914	9	0.815	-sia	45	1151	13	0.893
-sis	537	10065	206	8.978	-sis	367	13391	279	10.392
-tis	11	352	2	0.314	-tis	8	493	2	0.383
-tus	2	4	1	0.001	-tus	0	0	0	0

Distribution and Relative Frequency Across Time

Relative frequency trends of suffixes across historical periods

Distribution and Relative Frequency Across Time

Chi-squared with simulated p-values (10,000 replicates)

- ightharpoonup Result: $\chi^2 = 3236.7$, p = 9.999e-05
- ➤ Significant association between suffix type and period
 But weak effect size
 → Cramér's V = 0.149

P Measure

- P (Potential Productivity, Baayen 2009)
 - Formula: P = h / N
 - h = hapaxes with a given affix
 - N = total tokens with that affix
- ➤ Estimates the probability of encountering a new type after sampling *N* tokens with an affix
- ➤ Reflects the affix's speed and capacity to expand its lexical inventory

- *P* is a decreasing function
- Approaches zero as *N* increases
- Overestimates rare suffixes
- Produces counterintuitive results when suffixes with very different token frequency are compared

P Measure in AG

- Archaic phase \rightarrow inflated P values due to small corpus size
- -tus (rarest suffix) appears highly productive
- -sis (most frequent suffix) scores very low P, esp. in Classical & Hellenistic

Suffix	P-Archaic	P-Classical	P-Hellenistic	<i>P</i> -Imperial	
-eía	0.211	0.019	0.007	0.009	
- mos/-mós	0.047	0.032	0.062	0.028	
-sia	0.025	0.038	0.009	0.011	
-sis	0.133	0.029	0.020	0.021	
-tis	0.125	0.010	0.006	0.004	
-tus	0.156	1	0.25	0	

P* Measure

- P* (Expanding Productivity, Baayen 2009)
 - Formula: $P^* = h / H$
 - h = hapaxes with a given affix
 - H = total hapaxes in a corpus
- ➤ Enables comparisons across affixes
- \triangleright Since H is constant, comparing P^* for the six suffixes is equivalent to directly compare the number of their hapaxes, regardless their total respective frequency
- ➤ Conceptual critique: reflects affix share of new words, not true productivity rate

P* Measure in AG

- -sis = most productive suffix across all periods → core role in deverbal nominalization
- -mos/-mós = 2nd most productive, peaks in Hellenistic period (stylistic influence?)
- -tus = high in Archaic, then rapid decline, absent in Imperial era \rightarrow genre-specific use?
- -eía & -sia = **low productivity overall**; -sia surpasses -eía only in Imperial phase (minor fluctuation not statistycally significant)
- -tis = not productive in any period

Suffix	h-Archaic	h-Classical	h-Hellenistic	<i>h</i> -Imperial	
-eía	4	17	11	12	
-mos/mós	17	64	78	87	
-sia	4	12	9	13	
-sis	73	302	206	279	
-sis -tis	3	2	2	2	
-tus	7	1	1	0	

LNRE Models

- P is negatively sensitive to token frequency variation across affixes
- P* is less informative
- Solution: LNRE Models (Large Number of Rare Events)
- ➤ Predict hapax distribution beyond observed corpus size
- Estimate *P* for any *N*, even larger than observed

LNRE Models

Popular Models:

- GIGP (Generalized Inverse Gauss-Poisson)
- fZM & ZM (finite Zipf-Mandelbrot, Zipf-Mandelbrot)
 - \rightarrow (Implemented in zipfR R package)
- ➤ Allow balanced comparisons across affixes with different frequencies
- ➤ Useful for ancient language corpora with uneven data distributions

LNRE models in AG

Model Used:

- Zipf-Mandelbrot (ZM)
- ➤ More reliable with small samples than fZM or GIGP (Evert & Baroni 2006)
- ➤ Based on observed frequency distributions estimates:
- Expected hapaxes for N = 1000 and N = 2000
- Corresponding productivity values: P₁₀₀₀, P₂₀₀₀

LNRE models in AG

Archaic Period					Classical Period						
Suffix	h	EV1_1000	P_1000	EV2_2000	P_2000	Suffix	h	EV1_1000	P_1000	EV2_2000	P_2000
-eía	4	73.53	7.353	107.77	5.388	-eía	17	48.82	4.882	63.69	3.184
-mos/mós	17	62.04	6.204	83.52	4.176	-mos/mós	64	114.32	11.432	164.4	8.22
-sia	4	33.29	3.329	48.25	2.413	-sia	12	55.41	5.541	74.77	3.738
-sis	73	215.64	21.564	325.97	16.299	-sis	302	269.22	26.922	381.3	19.065
-tis	3	54.29	5.429	76.24	3.812	-tis	2	19.36	1.936	25.81	1.291
-tus	7	115.99	11.599	190.14	9.507	-tus	1	/	/	/	/
		Hellenis	tic Period			Imperial Period					
Suffix	h	EV1_1000	P_1000	EV2_2000	P_2000	Suffix	h	EV1_1000	P_1000	EV2_2000	P_2000
-eía	11	45	4.5	55.8	2.79	-eía	12	64.84	6.484	80.25	4.013
-mos/mós	78	143.02	14.302	204.51	10.226	-mos/mós	87	132.18	13.218	183.73	9.186
-sia	9	39.94	3.994	47.23	2.361	-sia	13	47.05	4.705	61.58	3.079
-sis	206	202.55	20.255	274.75	13.737	-sis	279	279.22	27.922	379.88	18.994
-tis	2	16.45	1.645	20.37	1.019	-tis	2	10.27	1.027	12.71	0.636
-tus	1	/	/	/	/	-tus	0	/	/	/	/

Goal: Explore possible competition among AG deverbal nominal suffixes

Motivation:

- ➤ Hypotheses in literature suggest morphological rivalry
- ➤ Notably: Chantraine (1933) proposes a competitive link between:
- $-sis \leftrightarrow -mos/-mós$
- $-sis \leftrightarrow -sia$
- ➤ Use quantitative data to test these claims and uncover new patterns of competition within the suffix system

Suffix Interaction and Resolution of Rivalry (Kendall's Tau correlation)

-sis vs -mos/mós

→ strong
negative
correlation (p =
5.34e-06)

Kendall's τ

1.0

0.5

0.0

-0.5

*****-sia vs -sis p = 4.84e-01

Kendall's τ

0.5

-0.5

-sia vs -eía → moderate negative correlation (p = 0.0116)

Kendall's τ

1.0

0.5

0.0

-0.5

-eía vs -tis → weak negative correlation (p = 0.0138)

Kendall's τ

1.0

0.5

0.0

-0.5

- ...-*sia* and *-sis*: Chantraine was wrong?
- Negative correlations suggest resolved past competition
 - Functional specialization
 - Genre-specific preferences
 - Suffix decline
- Correlations reflect outcomes, not active competition
- Further qualitative analysis needed to explore:
 - Genre-specific uses
 - Functional overlap or specialization
 - Possible overabundance patterns

4. Conclusions

Conclusions: Results

1. Methodological Contribution:

- First quantitative and diachronic study of the deverbal nominal domain in AG
- I applied:
 - ➤ *P* (Potential Productivity)
 - $ightharpoonup P^*$ (Expanding Productivity)
 - ➤ ZM Model (LNRE)

Conclusions: Results

2. Key Findings:

- -sis = most productive suffix across all periods
- -mos/mós = productive, esp. in Hellenistic period
- -eía and -sia = limited, unstable productivity
- -tis and -tus = non-productive (esp. -tus, limited to archaic epic)

Conclusions: Results

3. Suffix Competition:

- Significant negative correlations suggest resolved rivalry
 - √ -sis vs -mos/mós
 - √ -sia vs -eía
 - √ -eía vs -tis

No correlation ≠ **no rivalry**

Challenges in Quantifying Morphological Productivity in Ancient Greek

- Data Sparsity and Imbalance
- 2. Structural Inhomogeneity of Diachronic Corpora
- 3. Limitations of automatic POS-tagging in Ancient Greek

- 1. Data Sparsity and Imbalance
- The corpus size negatively influences the metrics
 - Ancient Greek corpora are limited in size, especially in early periods like the Archaic era
 - This leads to inflated productivity estimates for rare suffixes and underrepresentation of more common ones
 - Uneven suffix frequency across periods can distort quantitative results (e.g., high P for rare -tus, low P for frequent -sis)

- 2. Structural Inhomogeneity of Diachronic Corpora (cf. Štichauer 2006)
 - The corpus includes texts of diverse genres and authorship, unevenly distributed over time
 - Some genres are absent in certain periods (e.g., historiography in the Archaic phase), which biases affix visibility
 - Repetition effects from single authors can skew data e.g., a coined form may appear multiple times within one work but not elsewhere
 → LOSING OF A NEW COINAGE

3. Errors in Automatic PoS-tagging

- Automatic annotation can misclassify homographic forms (e.g., amúxeis as a noun or verb)
- This introduces noise into suffix frequency counts
- **Solution**: manual review of a representative sample to estimate and minimize error rate
 - → CURRENTLY IN PROGRESS

Future Directions and Methodological Considerations

1. Integrated Approach to Productivity

- No single measure $(P, P^*, \text{ or LNRE})$ is sufficient alone
- Combined use of multiple metrics offers a more reliable view, especially when results converge (e.g., ZM and P*)
- Requires critical interpretation informed by frequency distribution and corpus structure

Future Directions and Methodological Considerations

2. Suffix Usage by Literary Genre

- Currently analyzing suffix productivity across literary genres
- **Goal**: determine whether shifts in productivity reflect genuine morphological trends or stylistic preferences

Future Directions and Methodological Considerations

3. Qualitative Exploration of Morphological Rivalry

- Beyond correlation
- ✓ Assess functional overlap, semantic nuances, and genre constraints
- ✓ Investigate cases of overabundance (multiple suffixes coexisting for the same function) and polyfunctionality

→ CURRENTLY IN PROGRESS

THANK YOU FOR YOUR ATTENTION ©

(And special thanks to Richard Huyghe, who taught me most of this)

Silvia Zampetta

Contact: silvia.zampetta01@universitadipavia.it

References

- Aronoff, Mark. 1976. Word formation in generative grammar. Cambridge,
- Mass.: MIT Press.
- O Aronoff, Mark & Schvaneveldt, Peter. 1978. Testing Morphological Productivity. Annals of the New York Academy of Sciences: Papers in Anthropology and Linguistics 318. 106-114.
- O Baayen, R. Harald. 1992. Quantitative aspects of morphological productivi- ty. In Booij, Geert & Van Marle, Jaap (a cura di), Yearbook of Morphology 1991, 109-149. Dordrecht: Kluwer Academic Publishers.
- Baayen, R. Harald. 1993. On frequency, transparency, and productivity. In Booij, Geert & van Marle, Jaap (a cura di), Yearbook of Morphology 1992, 181-208. Dordrecht: Kluwer Academic Publishers.
- O Baayen, R. Harald. 2001. Word Frequency Distributions. Dordrecht: Kluwer.
- O Baayen, R. Harald. 2009. Corpus linguistics in morphology: Morphological productivity. In Lüdeling, Anke & Kytö, Merja (a cura di), Corpus Linguistics. An International Handbook. Vol. 2, 899-919. Berlin: Mouton de Gruyter.
- O Baayen, R. Harald & Renouf, Antoinette. 1996. Chronicling The Times: Productive lexical innovations in an English newspaper. Language 72. 69-96.
- O Bauer, Laurie. 2001. Morphological Productivity. Cambridge: Cambridge University Press.
- O Bauer, Laurie. 2005. Productivity: theories. In Štekauer, Pavol & Lieber, Rochelle (a cura di), Handbook of wordformation, 315-334. Dordrecht: Springer.
- O Corbin, Danielle. 1987. Morphologie dérivationnelle et structuration du lexique, vol. 1. Tübingen: Niemeyer.

References

- O Evert, Stephanie. 2004. A simple LNRE model for random character sequences. In Proceedings of the 7èmes Journées Internationales d'Analyse Statistique des Données Textuelles (JADT 2004), Louvain-la-Neuve, Belgium, 411-422.
- O Evert, Stephanie & Baroni, Marco. 2007. zipfR: Word frequency distributions in R. In Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics, Posters and Demonstrations Session, Prague, 29-32.
- O Gaeta, Livio & Ricca, Davide. 2002. Corpora testuali e produttività morfolo- gica: i nomi d'azione italiani in due annate della Stampa (1996-1997). In Bauer, Roland & Goebl, Hans (a cura di), Parallela IX. Testo-variazione- informatica/Text-Variation-Informatik. Atti del IX Incontro italoaustria- co dei linguisti, Salzburg, 1-4 novembre 2000, 223-249. Wilhelmsfeld: Egert.
- O Gaeta, Livio & Ricca, Davide. 2006. Productivity in Italian word formation: A variable-corpus approach. Linguistics 44(1). 57-89.
- O Plag, Ingo. 1999. Morphological Productivity. Structural Constraints in English Derivation. Berlin/New York: Mouton de Gruyter.
- O Plag, Ingo. 2003. Word-formation in English. Cambridge: Cambridge University Press.
- O Plag, Ingo. 2006. Productivity. In Aarts, Bas & McMahon, April M.S. (a cura di), The Handbook of English Linguistics, 537-556. Malden, MA: Blackwell.
- O Rainer, Franz. 2005. Constraints on productivity. In Štekauer, Pavol & Lieber, Rochelle (a cura di), Handbook of word-formation, 335-352. Dordrecht: Springer.
- O Štichauer, Pavel. 2009. Morphological productivity in diachrony: The case of the deverbal nouns in -mento, -zione and -gione in Old Italian from the 13th to the 16th century. In Montermini, Fabio & Boyé, Gilles & Tseng, Jesse (a cura di), Selected Proceedings of the 6th Décembrettes, 138-147. Somerville, MA: Cascadilla Proceedings Project.
- O Thornton, Anna Maria. 1988. Sui nomina actionis in italiano, Pisa: Università di Pisa (Tesi di dottorato).
- O Thornton, Anna Maria. 2005. Morfologia. Roma: Carocci.
- O Zampetta, Silvia. *Accepted*. Assessing Morphological Productivity in a Corpus Language: A Diachronic Study of Ancient Greek Deverbal Nominal Suffixes. Description and application in a productivity study. Proceedings of the 5th Int. Workshop on Resources and Tools for Derivational Morphology (DeriMo 2025).

