Offset vectors and affix meaning in English nominalizations

Martin Schäfer martin.schaefer@uni-leipzig.de

Universität Leipzig

Fribourg, September 5, 2025

Offset vectors

vector of derivative		_	vector of base	= offset vector
inclusiveness	(4 3 1)	_	inclusive (2 1 4)	= (2 2 -3)
inclusivity	(3 4 1)	_	inclusive (2 1 4)	$= (1 \ 3 \ -3)$

Introduction

- ▶ Shafaei-Bajestan et al. (2024, p. 381), on English plural inflection: "the semantics of shift vectors is changing in close association with the semantics of the singular and plural words."
- Schäfer (2025), on the English -ity/-ness affix rivalry: the distributional vectors of adjectival bases successfully predict the affix choice.

Introduction

- Shafaei-Bajestan et al. (2024, p. 381), on English plural inflection: "the semantics of shift vectors is changing in close association with the semantics of the singular and plural words."
- Schäfer (2025), on the English -ity/-ness affix rivalry: the distributional vectors of adjectival bases successfully predict the affix choice.

My research questions:

- 1. Are the offset vectors of *-ity* base-derivative pairs distinct from the *-ness* pairs?
- 2. Are there further patterns associated with specific subsets of bases within the offset vectors?

The *-ity* and *-ness* affix rivalry:

- (1) -ity
 - a. insular: insularity
 - b. eatable: eatability
 - c. sentimental: sentimentality
- (2) -ness
 - a. red: redness
 - b. messy: messiness
 - c. pleasant: pleasantness

Note: the study is restricted to adjectival bases used in Schäfer 2024b, data etc. at Schäfer 2024a

Study 1: -ity/-ness offset vectors [methods]

- adj/-ity/-ness derivatives: tagged ukWaC corpus ∩ fastText vectorsets
- ▶ 1 million item fastText vectors WITHOUT subword information
- no doublets
- \rightarrow set of 3014 base-derivative pairs

```
ukWaC corpus: Baroni et al. (2009); fastText vectorsets: Mikolov, Grave, et al. (2017)
```

Study 1: -ity/-ness offset vectors [methods]

- offset vectors
- downstream-analysis:
 - t-SNF for visualization
 - Linear Discriminant Analysis (LDA) for statistical corroboration

= same downstream analysis as Shafaei-Bajestan et al. (2024) and Schäfer (2025).

Study 1: -ity/-ness offset vectors [results]

average weighted F1 score: 0.838 (0.019 std) [baseline classifier 0.395]

Study 1: -ity/-ness offset vectors [discussion]

- clear difference, contrasting with results for French deadjectival derivations in Guzmán Naranjo and Bonami (2023)
- ► F1 score comparable to score for the bases
- ▶ no categorical difference, considerable variation, similar to results by Shafaei-Bajestan et al. (2024)

Study 1: -ity/-ness offset vectors [discussion]

- clear difference, contrasting with results for French deadjectival derivations in Guzmán Naranjo and Bonami (2023)
- ▶ F1 score comparable to score for the bases
- no categorical difference, considerable variation, similar to results by Shafaei-Bajestan et al. (2024)

Open issues:

- ▶ link to genre or text type
- possible frequency effects

Study 2: inside the -ity/-ness offset vectors

- both sets of offset vectors display considerable variation
- an obvious question is whether this variation is patterned in non-random ways even within the form pairs
- semantics of bases?

- Analogy task of Mikolov, Chen, et al. (2013)
- ▶ When adding the average offset vector to the base vector, is the target vector, that is, the actual *-ness* or *-ity* form associated with the base vector, contained in the nearest neighbors of the synthetic vector?

- Analogy task of Mikolov, Chen, et al. (2013)
- When adding the average offset vector to the base vector, is the target vector, that is, the actual -ness or -ity form associated with the base vector, contained in the nearest neighbors of the synthetic vector?

```
[average -ness offset-vector] + [vector of smooth] = [synthetic vector for smoothness]
```

How close is this synthetic vector to the actual vector for *smoothness*?

- (3) five average vectors
 - a. **all**: average offset vector across all pairs
 - b. **ity**: average offset vector across all -ity pairs
 - c. **ness**: average offset vector across all *-ness* pairs
 - d. **ble**: average offset vector across all 547 *-ble* bases that take only *-ity*
 - e. **ed**: average offset vector across all 173 -ed bases

- (4) four test sets:
 - a. other -ity: 25 bases with no discernable morphological pattern that have only -ity derivatives (sublime, secure).
 - b. **other** *-ness*: 25 bases of the same type that have only *-ness* derivatives (*harsh*, *smart*).
 - c. **-ble** [-ity-only]: 25 -ble bases that only have -ity derivatives (lovable, notable).
 - d. **-ed** [-ness-only]: 25 -ed bases that only have -ness derivatives (directed, guarded)

Table 1: test set (a), other -ity

Rank	all	ity	ness	ble	ed
Rank 2	6	4	9	5	8
Rank 3	5	3	4	3	5
Rank 4	4	4	4	6	2
Rank 5	2	3	0	1	1
Rank 6-10	3	3	3	3	3
Rank 11-50	3	6	2	5	3
Rank >50	2	2	3	2	3

Table 2: test set (b), other -ness

Rank	all	ity	ness	ble	ed
Rank 2	7	6	10	6	8
Rank 3	4	2	1	2	3
Rank 4	1	2	2	3	2
Rank 5	3	3	2	2	2
Rank 6-10	3	2	4	3	4
Rank 11-50	2	4	1	3	1
Rank >50	5	6	5	6	5

Table 3: test set (c), -ble [-ity only]						
Rank	all	ity	ness	ble	ed	
Rank 2	16	16	17	16	16	
Rank 3	1	1	1	3	2	
Rank 4	2	0	3	0	1	
Rank 5	1	1	1	1	3	
Rank 6-10	4	4	2	4	2	
Rank 11-50	0	2	1	1	0	
Rank >50	1	1	0	0	1	

Table 4: test set (d), -ed [-ness only]						
Rank	all	ity	ness	ble	ed	
Rank 2	5	4	6	4	7	
Rank 3	3	1	4	2	3	
Rank 4	2	3	1	2	2	
Rank 5	2	2	3	2	2	
Rank 6-10	2	3	2	4	2	
Rank 11-50	5	5	3	5	4	
Rank >50	6	7	6	6	5	

different test sets:

- ▶ ble [only ity] vs -ed [only -ness]
 - ► -ble [-ity only] test set: perhaps prototypical bases, in line with them forming the largest distinct subgroup of bases
 - -ed [only -ness]: perhaps different types of properties (less abstract?)
- → systematic differences between different types of bases

different composed vectors:

- clear differences between -ity and -ness
- overall better performance of the -ness related average vectors can perhaps be linked to its greater productivity and its less distinct lexicalization effects (Bauer, Lieber, and Plag, 2013)
- ► -ble [-ity only] and -ed average vectors: optimized for their respective bases

Other:

- for some items clear evidence of lexicalization effects: lowest ranked examples (always across all 5 probes): minority, otherness, and signedness
- bad performance in comparison to Shafaei-Bajestan et al. (2024); plausible explanation: the less stable nature of derivational vs inflectional relationship, see Bonami and Paperno (2018).

Conclusion

- (1) Are the offset vectors across the *ity/ness* non-doublet bases distinct from each other or not?
 - clear but non-categorical differences

Conclusion

- (2) Are there sub-regularities within the offset vectors of both affixes?
 - (difference between the ity and ness vectors)
 - sub-regularities based on morphological properties of the bases
 - -ble [only -ity] test set maximally different from the -ed[-ness only] test set
 - corresponding average vectors always performing best in the corresponding test sets
 - plausibly linked to prototypicality and semantic differences

Other possibilities

- Other operations between vectors
- Other conceptualizations of affixation (Marelli and Baroni, 2015): affix as matrix, affixation as matrix multiplication

References I

- Baroni, Marco et al. (2009). "The WaCky wide web: a collection of very large linguistically processed web-crawled corpora". In: *Language Resources and Evaluation* 43.3, pp. 209–226. ISSN: 1574–0218. DOI: 10.1007/s10579-009-9081-4.
- Bauer, Laurie, Rochelle Lieber, and Ingo Plag (2013). *The Oxford Reference Guide to English Morphology*. Oxford: Oxford University Press.
- Bonami, Olivier and Denis Paperno (2018). "Inflection vs. derivation in a distributional vector space". In: *Lingue e Linguaggio* 17.2, pp. 173–195.
- Guzmán Naranjo, Matías and Olivier Bonami (2023). "A distributional assessment of rivalry in word formation". In: Word Structure 16.1, pp. 87–114.

References II

- Marelli, Marco and Marco Baroni (2015). "Affixation in Semantic Space: Modeling Morpheme Meanings With Compositional Distributional Semantics". In: *Psychological Review* 122.3, pp. 485–515. DOI: 10.1037/a0039267.
- Mikolov, Tomas, Kai Chen, et al. (Jan. 2013). "Efficient Estimation of Word Representations in Vector Space". In: *ArXiv* e-prints. DOI: 10.48550/arXiv.1301.3781.
- Mikolov, Tomas, Edouard Grave, et al. (2017). "Advances in Pre-Training Distributed Word Representations". In: *CoRR*. DOI: 10.48550/arXiv.1712.09405.
- Schäfer, Martin (July 2024a). "A distributional semantics analysis of the two English suffixes -ity and -ness". In: DOI: 10.6084/m9.figshare.23538207.v1. URL: https://figshare.com/articles/online_resource/A_distributional_semantics_analysis_of_the_two_English_suffixes_-ity_and_-ness/23538207.

References III

- Schäfer, Martin (2024b). "The role of meaning in the rivalry of -ity and -ness: evidence from distributional semantics". In: English Language and Linguistics. Accepted for publication. URL: https:
 - //www.martinschaefer.info/publications/download/
 2024_ityNess_R2_martin_schaefer_accepted.pdf.
- (2025). "The role of meaning in the rivalry of -ity and -ness: evidence from distributional semantics". In: *English Language and Linguistics*, pp. 1–46. DOI: 10.1017/S1360674324000443.
- Shafaei-Bajestan, Elnaz et al. (2024). "The pluralization palette: unveiling semantic clusters in English nominal pluralization through distributional semantics". In: *Morphology* 34.4, pp. 369–413. DOI: 10.1007/s11525-024-09428-9.