Multilingual Base Word Recognition in Derivation

Vojtěch John, Zdeněk Žabokrtský

Introduction

Motivation

- Creation of static derivational resources is hard
 - Manual methods are labor- and time- intensive
 - Unsupervised and semi-supervised methods are usually unreliable
- Supervised extension of existing resources
- Dynamic modelling of derivation might be useful
- Predicting base words we assume derivation is directional
- Candidate base words can be available.
 - For given word and set of candidate parents, select the most probable parent
 - We need to decide for a word and candidate base word, whether the candidate is naše word
 - in: "kindly, kind" out: True
- Candidate base words can also be unavailable
 - For given word, generate base words
 - in: "kindly" out: "kind"

Data: Universal Derivations

- Largest current derivational resource
- 28 datasets of varying size and quality
- 20 languages in total, mostly Indo-european

- Derivational relations presented as edges of trees (or directed acyclic

graphs)

- Some resources include also:
 - Compounding
 - Conversion
 - Word variants

Data: Remarks on preprocessing

- Train-dev-test split on trees (s.t. the overlap between common base words is minimal)
- We extract pairs (word-base word(s))
- Negative training samples (and test samples) generated automatically
 - Word and Base word always taken from the same derivational tree
- We treat the datasets as gold data
 - Missing edges
 - Incorrect or debateable edges
 - Design decisions

Experiment 1: Selecting base words

Task formulation and data

- Given a pair (candidate base word/s, child), decide whether such a pair constitutes a valid derivational relation or not.
 - Input: (kind, kindly)
 - Output: True
- We train binary classifiers
- Training on each data resource separately
- As test data, we take 5 % of the total data
- Negative examples
 - Sampled from words present in the same derivational tree
 - Approx. the same amount of positive and negative examples in each dataset
 - The numbers Is arbitrary

Classifiers - ablation study

Neural networks

- Words in a fixed frame, forwards and backwards (e.g. "[e, g, g, 0, 0, ..., 0, g, g, e]")
- Two classification heads (*Parent* and additional *Relative*) with dense layers.

- Simple

- *Inputs*: Product of *fasttext* embeddings, Levenshtein distance

- Cosine

- **Inputs**: cosine distance of fasttext embeddings, candidate word pair (*word, base word*) words (processed by ResNet blocks)

- Full

- Inputs: the two words and their fastText embeddings
- words are embedded and processed by ResNet blocks
- Embeddings: a dense layer with dropout, multiplied and then a convolutional layer

- Subtract

Inputs: Difference between fasttext embeddings, difference between words; otherwise same as in full

Results

Setting	Binary accuracy	Precision	Recall
Cosine	88.81 %	74.42 %	77.43 %
Simple	78.91 %	46.92 %	51.24 %
Subtract	93.05 %	88.24 %	83.87 %
Full	87.45 %	73.26 %	79.05 %

- **Subtract** being best corresponds to a finding by (Musil et al., 2019) - differences of word embeddings ~ meanings of derivational affixes

Final version

- Modified version of Subtract (e.g. embedding difference is fed to a transformer decoder block)
- Macroaverage across datasets:
 - Precision 91.2 %
 - Recall 90.8 %
- Effect of dataset size small if any
- Effect of data quality seems much larger

Experiment 2: Generating base words

Methods

- Neural networks with Transformer architecture
- Monolingual models with ablations
 - *Basic* (small transformer 2 layers)
 - *Big* (increase size)
 - BPEmb (add BPEmb embeddings to the input)
 - FastText (add FastText embeddings to the input)
 - Early stopping
- Fine-tuned multilingual models
 - ByT5 models (no tokenization)
 - Small and Base versions
 - Finetuned on all the datasets together

- 5 epochs

Data

- 500 trees for test data, 100 for validation data
 - if not available, 50 % of trees to train set, 10 % to validation set
- Multilingual models combined resources
 - Same language, different resources
 - Throw away overlaps of train and test
 - No effort to resolve inconsistencies
 - E.g. missing edges in one of the resources
 - May unfairly improve the performance over small test sets

Results

- Metrics: Word-level precision
- Results vary wildly across resources
 - Size helps, but quality helps more
- Finetuned models perform best
- Model size does not seem to matter
- FastText embeddings help, BPEmb embeddings don't.
 - Perhaps the models want morphological information, not semantics?

	Basic	Big	BPEmb	FastText	ByT5-small	ByT-basic
Macro Average	62.3	61.3	59.2	64.0	68.0	68.0

Binned macroaverage

- We binned the results (4 bins, 7 results each)
- FastText and ByT5 models are more robust than the rest
 - No observable effects of the curse of multilinguality

Bins	4	3	2	1
Basic	30.5	60.7	74.1	83.8
Big	30.3	59.1	72.5	83.1
BPEmb	22.7	58.9	72.7	82.5
FastText	34.8	62.6	74.1	84.3
ByT5-small	35.5	66.6	80.3	89.5
ByT5-basic	36.0	66.6	80.2	89.4

(FastText) learning curves are a mess

First experiment on this scale

- Initial points

- (Resource) complexity
- Flat curves
 - Simple resources
 - Automatic generation
 - Reverse engineering
- Steep curves
 - When?
 - (Language) complexity
- Simple resources
 - 1000 to 10,000 examples
- Difficult resources
 - Over 100,000 examples?

DeriMo 2025

et-EstWordNet ru-EtymWordNetRU

pt-EtymWordNetPT hr-CroDeriV

sh-EtymWordNetSH tr-EtymWordNetTR

gd-EtymWordNetGD

sv-EtymWordNetSV

ca-EtymWordNetCA

pt-NomLexPT cs-EtymWordNetCS

it-DerlvaTario en-WordNet fi-FinnWordNet

fr-Demonette pl-EtymWordNetPL

fa-DeriNetFA sl-Sloleks

hr-DerivBaseHR es-DeriNetES

ru-DerivBaseRU de-DErivBase ru-DeriNetRU

pl-PolishWFN

cs-DeriNet2

en-CatVar

la-WFL

ru-GoldenCompoundAnaly

Interesting error types

- Wrong order of word-formation operations
 - Overwhelming *whelming
- More or less plausible but non-existent base words
 - Západopennsylvánský *západopennsylván (west-pennsylvanian *west-pennsylvan)
 - *Svatba* *svat (n.b. etymologically correct)
 - Antibióza *bióza (antibiosis *biosis)
- Conversion resolution
 - Is "festering" (NOUN) a child of "fester" or "festering" (VERB)?
 - Possible solution: add POS tags
- Word variants
 - Oučinkování účinkování vs oučinkování oučinkovat

DeriMo 2025

Summary

- We have trained state-of-the-art models for base-word identification & generation
- Training data quality is crucial
- Simple vs complex resources
- Multilingualityimproves robustness
- Thank you for your attention!